// transform the model by the transformation value
Eigen::Matrix4f txform;
//get the txformation matrix (discussed below)
pcl::transformPointCloud (*cloud_3dmodel, *txformed_model, txform );
ICP can be used to estimate the transform :
Eigen::Matrix4f txform;
pcl::IterativeClosestPoint<pcl::PointXYZRGB, pcl::PointXYZRGB> icp;
icp.setInputCloud(cloud_3dmodel);
icp.setInputTarget(cloud_cluster);
pcl::PointCloud<pcl::PointXYZRGB> Final;
icp.align(Final);
std::cout << "ICP has converged:" << icp.hasConverged() << " score: " << icp.getFitnessScore() << std::endl;
txform = icp.getFinalTransformation();
Refer:
http://stc0.wordpress.com/2013/03/22/equivalent-ways-to-register-two-point-clouds-with-pcl/
http://pointclouds.org/documentation/tutorials/iterative_closest_point.php
http://robotica.unileon.es/mediawiki/index.php/PCL/OpenNI_tutorial_3:_Cloud_processing_%28advanced%29